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SUMMARY

Interfacial instability of a rotating miscible droplet with signi�cant Coriolis force in a Hele–Shaw cell is
simulated numerically. The in�uences of the relevant control parameters are �rst discussed qualitatively
by �ngering patterns. More vigorous �ngerings are found at higher rotational e�ects, a lower viscosity
contrast and a weaker e�ective surface tension (Korteweg constant). For a time-dependent gap Hele–
Shaw cell, a higher cell lifting rate makes the rotating droplet bear an inward straining �ow, which
leads to �ngering enhancement. On the contrary, a higher pressing rate provides more stable e�ects
by additional squeezing outward �ow. A quantitative analysis between the Coriolis e�ects and tilting
angles of �ngers is addressed. For arbitrary combinations of all relevant control parameters, the values
of tilting angles follow a nearly linear relationship with the Coriolis e�ects. We estimate the correlation
between the relevant control parameters (dimensionless Coriolis factor Re, viscosity parameter R, cell
lifting rate a) and tilting angles (�) of �ngers that can be approximated as �=(0:0047

√
Pe=R+18:2a)Re

for signi�cant Korteweg stresses. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dynamics of interfacial stability in a Hele–Shaw cell, or porous medium, are investigated
intensively since the pioneer works by Hill [1] and Sa�man and Taylor [2]. The viscous
�ngering instability arises when a less viscous �uid displaces a more viscous one in the
narrow gap between two �at parallel plates, known as a Hele–Shaw cell. If the �ow oc-
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curs in rectilinear channels, the less viscous �uid makes the shape of a long, smooth bubble
[1, 2]. On the other hand, branched and much more intricate interfacial patterns are formed
if the less viscous �uid is injected through a hole located on the upper plate, and �ows ra-
dially [3]. Many theoretical and experimental studies have been performed and have led to a
good understanding of the basic physical mechanisms in both geometries. Another Hele–Shaw
problem is the rotating cell, which is rotated around an axis perpendicular to the plane of
the �ow. In this situation, the interfacial instability is driven by centrifugal forces acting on the
interface separating �uids of di�erent densities. Stronger unstable mechanism is expected if
the heavier �uid, usually more viscous, is the driving �uid and moves away from the centre.
The competition of these two counter-e�ective mechanisms, viscously stable and density un-
stable, leads to the determination of interfacial instabilities.
In recent years, the rotating Hele–Shaw �ows have been the subject of intensive studies

[4–14] due to their potential applications to the technology of spin-coating, i.e. precious metals
for electronic wafers, or organic solvents for cleaning purposes. In the common practices of
the spin-coating process, a liquid drop is initially deposited on the top of a rotating target
substrate, and is spread outward by centrifugal force [15, 16]. Since the coating layer is
extremely thin, the approximation by lubrication theory yields a similar physical phenomenon
to Hele–Shaw equations. Thus, the process of spin-coating bears a great resemblance to a
rotating droplet in a Hele–Shaw cell. However, based on this theory, most of the problems
being studied focus on the evolution of the interface in constant-gap spacing cells. The time-
dependent gap Hele–Shaw �ow, where the upper plate is lifted or pressed uniformly and the
plates remain parallel to each other during the process, has been one of the subjects for recent
studies [17–19]. In such types of problems, a simple radial geometry �ow in lifting cell has
been investigated theoretically [17, 19] and experimentally [18]. They have reported that the
lifting puts the �uid under a lateral straining �ow that induces an unstable inward driving
force and forms visually striking �ngering patterns. However, these studies are results from a
stationary droplet. For further investigation, in this work, we will focus on a rotating miscible
droplet in a time-dependent gap Hele–Shaw cell.
In the modern micro-fabrication practice, the spin-coating takes place at high rotational

Bond number [15]. Wang and Chou [15] experimentally study the �ngering instability of
spinning-droplet at high rotational Bond number and report that the maximum attainable ra-
dius may strongly depend on Reynolds number. Thus, the Coriolis force plays an important
role for spinning �ow, which arouses much interest in investigating the e�ects of Coriolis
force. Recent research studies simulations of immiscible [5] and miscible [9] �ows in a ro-
tating Hele–Shaw �ow, accounting for the Coriolis forces. Chen and Liu [9] report that the
miscible interface is found to be more stable at higher Coriolis factors without an addition
injection. However, with an additional injection, the interfacial �ngerings are suppressed but
the signi�cant body distortion is observed. In these studies, the e�ects of signi�cant Coriolis
forces have yet been investigated thoroughly. Thus, in this numerical study we focus on a
rotating miscible droplet in a time-dependent gap Hele–Shaw cell with signi�cant Coriolis
e�ects. In addition, we also study the e�ects of unconventional miscible e�ective interfacial
tension, or the so-called Korteweg stresses [19–23]. The similarities between the miscible
Korteweg stresses and conventional surface tension amid an immiscible interface had been
veri�ed qualitatively [19–22] and quantitatively [23]. To conclude the study, a quantitative
correlation between relevant control parameters and tilting angles of �ngers caused by the
e�ects of signi�cant Coriolis forces will be established. The outline of this paper is as
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follows. After the formulation of the physical problem and review of the computational tech-
nique in Section 2, Section 3 focuses on the computational results and their interpretations.
Conclusions are provided in Section 4.

2. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

We investigate the interfacial instability of a heavier (density �h) and more viscous (viscosity
�h) droplet with an initial diameter Do, which is surrounded by a miscible �uid with less
density and viscosity, denoted as �l and �l, respectively, in a rotating Hele–Shaw cell with
a time-dependent gap. The cell rotates uniformly around its symmetry axis. In this con�ned
environment, the �ow takes place in narrow space between two �at plates, where the upper
plate is lifted up or pressed down at a speci�ed rate, and the lower plate is held �xed. The
initial plate spacing is represented by bo, and the plate–plate distance is denoted by b(t) with
the change of time t. As in Reference [17], we assume an exponentially increasing gap width
b(t)= boeât , where â is a control parameter. This physical problem is governed by the set of
following equations [8–10, 17, 19]:

∇ · u = − ḃ(t)
b(t)

(1)

∇(p+Q) = −12�
b2
u+ �!̂2x+ 2�!̂ez × u+∇ · (�̂(∇c)(∇c)T) (2)

@c
@t
+ u · ∇c = D∇2c (3)

Equation (1) expresses a modi�ed incompressible condition, which accounts for the lifting
or pressing of the upper plate [17]. The gap-averaged velocity is u, while the overdot denotes
total time derivative. A generalized Darcy’s law is expressed by Equation (2), where p is the
hydrodynamic pressure, and Q is the additional pressure due to Korteweg stresses [19–23].
In addition to the conventional viscous term on the right-hand side of this equation, the extra
three terms are the centrifugal forces, Coriolis forces and Korteweg stresses, respectively. The
concentration of lighter �uid is represented by c, and � denotes the viscosity, !̂ the angular
speed, x the position vector on x–y plane, ez the unit vector in z-direction, and �̂ the Korteweg
stresses coe�cient. The superscript T denotes a transpose. The concentration equation is given
by Equation (3), where D is the constant di�usion coe�cient.
The density and viscosity variations of the mixture are expressed as

�(c) = c�l + (1− c)�h (4)

�(c) = �leR(1−c); R= ln(�h=�l) (5)

where R is the viscosity parameter. In order to render the governing equations dimensionless,
we take the diameter Do of the droplet and the density di�erence ��=�h − �l as the char-
acteristic scales. Since the simulation is carried in the reference frame rotating with the cell,
a centrifugal-induced time, 12�l=b2o��!̂2, is taken as a characteristic time scale. By further
scaling with viscosity �l and pressure ��!̂D2

o, a characteristic velocity scale b2o��!̂2Do=12�l
is obtained. By making the governing equations dimensionless, we obtain the dimensionless
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parameters, such as the Peclet number Pe, which can be interpreted as the dimensionless rotat-
ing speed, the viscosity parameter R representing the viscosity contrast, the Reynolds number
Re, which includes the e�ect of the Coriolis forces, the dimensionless Korteweg constant �
that stands for the e�ects of Korteweg stresses, the gap width parameter a, which can express
the variety of the dimensionless speed in the gap spacing, and take the forms

Pe=
��b2o!̂

2D2
o

12�lD
; R= ln

�h
�l

; Re=
��b2o!̂
12�l

; �=
�̂

��!̂2D4
o
; â=

12a�l
��b2o!̂2

(6)

The velocity is further split into a divergence-free component uf , which is the velocity of
the constant spacing, and an axisymmetric divergent radial velocity ud(r) caused by the gap
variation [19], so that

u = uf + ud (7)

∇ · uf = 0 (8)

∇ · ud = −a (9)

The divergent radial velocity is obtained directly from Equation (9) as ud = − ar=2, which
is a potential �eld. The divergence-free component uf = (uf ; vf ) can be obtained by solving
the equations of streamfunction  and vorticity !, expressed as

uf =
@ 
@y

; vf = − @ 
@x

(10)

∇2 = −! (11)

!=−R∇ · ∇c − 1
e−2at�

(
y
@c
@x

− x
@c
@y

)
− 2Re
e−2at�

(
u
@c
@x
+ v

@c
@y
+ �a

)

− �
e−2at�

(
@c
@x

(
@3c

@x2@y
+

@3c
@y3

)
− @c

@y

(
@3c

@y2@x
+

@3c
@x3

))
(12)

Since the e�ects of centrifugal forces and Coriolis forces are more enhanced as the �ngers
grow further away from the rotating axis, the computational domain is enlarged twice of
the previous studies [8, 9] to account for signi�cant Coriolis forces. Boundary conditions are
prescribed as follows:

x=±2:  =0;
@c
@x
=0 (13)

y=±2:  =0;
@c
@y
=0 (14)

The initial conditions are assumed as a circular shape bounded by a steep concentration
gradient in a form of error function. For obtaining extremely �ne structures of �ngers, a
highly accurate pseudospectral method is employed. To solve the streamfunction equation by
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a pseudospectral method, a Galerkin-type discretization using cosine expansion is employed
in the streamwise direction

 (x; y; t) =
∑

 ̂ k(y; t) cos[2�kx] (15)

!(x; y; t) =
∑

!̂k(y; t) cos[2�kx] (16)

In the normal direction, discretization is accomplished by sixth-order compact �nite di�erences.
Vorticity equation is evaluated by sixth-order compact �nite di�erence schemes. The spatial
derivatives in the concentration equation are discretized by sixth- and fourth-order compact
�nite di�erence schemes for di�usion terms and convection terms, respectively. A fully explicit
third-order Runge–Kutta procedure on time is employed to solve concentration equation and
advance in time as

@c
@t
=F(c) (17)

so that

cki; j= ck−1i; j +�t[�kF(ck−1i; j ) + �kF(ck−2i; j )] (18)

where �1 = 8=15; �1 = 0; �2 = 5=12; �2 = − 17=60; �3 = 3=4; �3 = − 5=12.
The numerical scheme is largely similar to the one used for earlier investigations on planar

fronts [24–26], which had been validated by comparing growth rates of small perturbations
with linear stability results. In addition, the numerical code had also been employed recently
to further study the �ngering formation on a similar rotating Hele–Shaw �ow with signi�cant
in�uences of the Korteweg stresses [23]. The numerical results agree excellently with the
correspondent immiscible experimental �ndings both qualitatively and quantitatively. All these
relevant validations for similar �ow �elds can serve as the creditability of the numerical
method employed in the present study. More details on the implementation and quantitative
validation of these schemes are provided in References [24–26].

3. RESULTS AND DISCUSSIONS

We begin our investigation by a systematic study of the concentration images obtained for
di�erent values of the control parameters: Peclet number Pe, viscosity parameter R, Korteweg
constant � and gap width parameter a. Coupling with signi�cant Coriolis e�ects, the in�uences
of these control parameters will be evaluated �rst in a constant gap width cell followed by a
time-dependent gap cell. In order to account for the signi�cant e�ect of Coriolis forces, we
keep the Reynolds number �xed at Re=1:5, which is the typical value in the practical spin
coating procedure, in this study. Furthermore, a constant density ratio at �h=�l = 2 is applied
for cases with a non-zero gap width parameter to simplify the problem.

3.1. Reference case

A representative calculation of a droplet in constant gap-spacing cell, but assuming absence of
Korteweg stress, i.e. a=0 and �=0, for Pe=7000, R=2 is described. The R-value indicates
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Figure 1. Pe=7000, R=2, Re=1:5, a=0, �=0; concentration images at: (a) t=5; (b) t=15;
(c) t=20; and (d) t=28. Very vigorous interfacial instability is triggered by the strong centrifugal force,
giving rise to a characteristic �ngerings pattern: �ngers growing, nonlinear tip-splitting, �ngers merging
and multi-layer �ngering. Due to the nature in which the centrifugal force is proportional to radial
distance, these �ngering instabilities are further enhanced at later time. Besides, the pattern shows the

counter-clockwise trend due to the in�uences of strong Coriolis forces.

that the droplet is about 7.4 times more viscous than the environment. Figure 1 displays the
time sequences of the concentration �elds. First, there is a latency period when the inter-
face remains circular. After this period, the interface develops small ripples, which indicates
the initiation of instability. Very vigorous interfacial instability is triggered by the strong
centrifugal force in time, giving rise to a characteristic �ngerings pattern: �ngers growing,
nonlinear tip-splitting, �ngers merging and multi-layer �ngering. Due to the nature in which
the centrifugal force is proportional to radial distance, these �ngering instabilities are further
enhanced at later time. At t=15, slimmer structures associated with �ngers tip-splitting and
merging are observed. This merging of �ngers is more signi�cant by the e�ect of the Coriolis
force. As the orientation of the Coriolis force applies tangentially to the droplet circumfer-
ence, this leads to the merging events between the closely adjacent �ngers. Because one of
them has denser concentration, the adjacent �ngers rotating in relative tangential speed tend
to merge together. At later time, i.e. t=20, and 28, the concentration images clearly show
the counter-clockwise trend and multi-layers of �ngers. While the concentration of the far
outer �ngers disperses signi�cantly, some of them obtain enough �ux from the droplet centre
and progressively stretch outward, the others gradually disappear. Simultaneously, the inner
�ngers of a new layer grow fast because of the stronger centrifugal force and Coriolis force
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Figure 2. Re=1:5, a=0; vorticity contours at t=20 for: (a) Pe=7000, R=2, �=0; (b) Pe=7000,
R=1, �=0; (c) Pe=14 000, R=2, �=0; and (d) Pe=7000, R=2, �=−10−5. The vorticity contours
clearly show the apparent multi-layer �ngers’ fronts. However, the pattern including Korteweg stresses
e�ects shows only single-layer �ngering and the interfacial instabilities are signi�cantly restrained.

induced by their dense concentration. These new �ngers will stretch outward by following the
old tracks and even surpass the old ones. Contours of absolute values of vorticity, displayed
in Figure 2(a), clearly con�rms the multi-layer �ngers’ fronts and the counter-clockwise trend
at later time t=20.

3.2. E�ects of control parameters in a constant gap width cell

For a heavier and more viscous droplet, the centrifugal force provides an unstable outward
driving force, while the viscous e�ect tends to stabilize the contacting front [8]. The occurrence
of instability is decided by the competition of unstable centrifugal force and stable viscous
damping. In Figure 3 we keep the same physical parameters used in Figure 1, but decrease
the value of the viscosity parameter to R=1. Compared to the reference case, the �ngerings
are far more vigorous at t=15. In agreement with the previous study [8], a lower viscosity
parameter provides less stable damping e�ects. Thus, it leads to more vigorous �ngerings.
Note that the pronounced counter-clockwise tilting of the �ngers is caused by the e�ect of
the stronger Coriolis force. These concentration images associated with the vorticity contours
shown in Figure 2(b) clearly show the apparent multi-layer �ngers’ fronts at later time. In
this lower viscosity contrast case, the �ngers grow, stretch outwardly, and di�use transversely,
which leads to the far outer �ngers to disperse quickly and form the multi-layer topologies.
However, the front of �ngers with dense concentration will disappear later on. This interesting
multi-layer front is similar to the �ndings of the immiscible case [4].
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Figure 3. Pe=7000, R=1, Re=1:5, a=0, �=0; concentration images at: (a) t=15; and (b) t=20.
A lower viscosity parameter provides less stable damping e�ects, and leads to more vigorous �ngerings

and the clearly counter-clockwise tilting of the �ngers.

Figure 4. Pe=14 000, R=2, Re=1:5, a=0, �=0; concentration images at: (a) t=15; and (b) t=20.
The development of more vigorous branches is observed, since the stronger centrifugal force induces

more vigorous interfacial instability.

We now turn to the investigation of the role played by the Peclet number. As shown
in the reference case, we keep the viscosity parameter at R=2, but increase the value of
the Peclet number to Pe=14000, meaning weaker di�usive e�ects or faster rotating speed.
As expected, the stronger centrifugal force induces more vigorous interfacial instability as
shown in Figure 4. We observe that the development of more vigorous branches remains
to the later stage (t=20). An interface with signi�cant multi-layers is resulted. In addi-
tion, the new layer is much more rami�ed. These phenomena can also be observed by
contours of vorticity, depicted in Figure 2(c). The new layer presents outgoing �ngers,
which develop a peculiar fork-like shape, which is also identi�ed in immiscible situation
[7], at t=20. Besides, compared to the reference case, the �ngering pattern clearly shows
a rotational trend because of the stronger Coriolis e�ects induced by the faster rotating
speed.
The role played by Korteweg stresses is discussed now. From the morphological similar-

ities between the observed miscible patterns including Korteweg stresses, and the structures
obtained in related immiscible �ows [10, 19, 21, 22], it has been concluded to treat Korteweg
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Figure 5. Pe=7000, R=2, Re=1:5, a=0, and �= − 10−5; concentration images at: (a) t=20; and
(b) t=24. The pattern shows only single-layer �ngering and the interfacial instabilities are clearly

restrained. It reveals the stabilizing role playedby the Korteweg stresses.

stresses as an e�ective surface tension on mixing miscible interfaces. The in�uences of
Korteweg stresses on the pattern evolution are shown in Figure 5, as the same physical
parameters in Figure 1 except �=−10−5. The pattern reveals the stabilizing role played
by Korteweg stresses. Furthermore, the pattern shows only single-layer �ngering, and the
interfacial instabilities are signi�cantly restrained. One of the most remarkable features of
the pattern’s temporal evolution is the absence of competition between adjacent �ngers. Also,
the number of growing �ngers is not changed during the development of the pattern. These
phenomena, also observed by contours of vorticity in Figure 2(d) as well, are in line with
the previous studies of a droplet in di�erent �ow �elds [10, 19, 21, 22].

3.3. Simulations of a time-dependent gap cell

The value of gap width parameter a represents the variety of the gap spacing. A negative
parameter a represents a pressed cell while lifted, if a is positive. It is interesting to point out
that the situation of a pressing cell is quite similar to the spin coating without injection. Con-
sidering the continuously decreasing thickness of coating layer due to outward spray during
the spin coating process, a pressing cell gap is analogous to the practical spin coating. First,
in the pressed case, we keep the same physical parameters used in Figure 1 but set the value
a= −0:035. It is known that displacement by a more viscous �uid leads to a stable interface.
So, when the upper plate is pressed at a certain rate, the outward �ow of a more viscous �uid
provides stable force. Concentration images displayed in Figure 6(a) shows that the interfacial
�ngerings are suppressed signi�cantly and the miscible interface is found to be more stable.
The �ngers exhibit a single layer and gradually disperse with the droplet, stretch outward
and eventually disappear. At last, it results in a much smoother interface that reveals a fully
stable pattern. If the gap width parameter is raised to even higher a= −0:05, cf. Figure 6(b),
a totally stable mixing front is observed. The squeezing droplet remains nearly circular
during the whole pressing process. An interesting comparison of the present pressing cell
to the situation with injection [9] can be addressed. While additional radial velocities are
provided by these two situations and lead to stabilizing e�ects, the topologies of the �nal
interfaces appear with apparent di�erences, i.e. a nearly circular droplet in Figure 6(b) at
the present pressing cell case versus an apparent body distortion with injection [9]. These
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Figure 6. Pe=7000, R=2, Re=1:5 and �=0 at t=42; concentration images for: (a) a= − 0:035;
and (b) a= − 0:05. The higher pressing rate provides more stable e�ects by additional outward �ows.

Figure 7. Pe=7000, R=2, Re=1:5, a=0:015, and �=0; concentration images at: (a) t=15; and
(b) t=17. The beautiful interfacial patterns show the �ngers rotating counter-clockwise with drops’

emission in the tangential direction.

inconsistent topologies are attributed to the di�erent distributions of the radial velocities.
The magnitudes of radial velocity caused by injection are inversely proportional to the dis-
tance away from the origin and decay as the �ngers further grow. As a result, the inter-
face is predominated by the centrifugal forces and Coriolis forces at later stage. It explains
the distortion of the droplet. Nevertheless, at the present pressing cell, the radial velocity is
proportional to the radial distance. For a signi�cantly larger pressing rate, the interface is
primarily controlled by the radial velocity caused by pressing and remains nearly circular for
all times.
Next, we turn to the simulations in a lifting Hele–Shaw cell. The gap width parameter

is changed to a=0:015 as shown in Figure 7. This lifting puts the droplet under a lateral
straining �ow. A less viscous �ow displaces the more viscous droplet, which leads to �ngering
enhancement. It results in the penetration of few inward (wide and round) �ngers toward the
droplet centre, and extrudes the outgrowing �ngers with the nodes of dense concentration.
They induce the strong centrifugal force and Coriolis force, which move �ngers fast outwardly
and tangentially. Great enhancement of interfacial instabilities and the development of more
vigorous �ngering are observed. The beautiful interfacial patterns show the �ngers rotating
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counter-clockwise with drops’ emission in the tangential direction. These results show exciting
dynamical and morphological patterns.

3.4. Quantitative analysis of tilting angles of �ngers

The above simulations have con�rmed the general expectations, such that more vigorous �n-
gerings are triggered by a faster rotating speed, a lower viscosity contrast, stronger surface
tension e�ects and a higher lifting rate. Also shown is the lack of �ngering competitions
and nonlinear �ngering behaviours, such as splitting, merging and multi-layer, for stronger
Korteweg stresses. These relatively simple �ngering patterns at stronger Korteweg stresses pro-
vide better samples to evaluate the quantitative in�uences of Coriolis forces, such as the tilting
angles �. Figure 8 shows a typical pattern obtained at Pe=14000, R=1 and �= −5× 10−6.
At t=10, it is clearly observed that all �ngers demonstrate the absence of �nger competition
as well as the nonlinear activities. It is important to note that the morphologies observed in
this result are remarkably similar to the ones obtained experimentally and numerically for im-
miscible �ow [4–7]. At t=15, extremely slim �ngers turn counter-clockwise due to the e�ects
of the strong centrifugal force and Coriolis force. In order to avoid the emergence of multi-
layer �ngering for combinations of all the control parameters simulated, in this study, only
simulations with signi�cant Korteweg stresses, i.e. �= −10−5 will be used in the quantitative
evaluation of Coriolis e�ects.
Shown in Figures 9(a) and (b) are the corresponding polar representations of the representa-

tive interfaces, taken as the concentration contours c=0:95, for a particular case of Pe=7000,
R=2 and Re=1:5 as concentration images presented in Figures 5(a) and (b), respectively.
The initial �at interfaces are also plotted by the dash-dot lines. Under the in�uences of signif-
icant Coriolis forces, tilting �ngertips are clearly observed as time proceeds. At the later time
t=24, shown in Figure 9(b), all the �ngers oriented toward nearly the same tilting angles.
On the other hand, the �ngertips keep growing normally without the e�ects of Coriolis force,
cf. Re=0 in Figure 9(c). We further plot the evolution of mean tilting angles for cases with
various control parameters in Figure 10. Similar evolving histories are found for all the three

Figure 8. Pe=14 000, R=1, Re=1:5, a=0, �= − 5× 10−6; concentration images at: (a) t=10;
and (b) t=15. At t=10, it is clearly observed that all �ngers demonstrate the absence of �nger
competition. At t=15, extremely slim �ngers turn counter-clockwise due to the e�ects of the strong

centrifugal force and Coriolis force.
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Figure 9. Polar representation of the interfaces: (a) as corresponding concentration image shown in
Figure 5(a); (b) as corresponding concentration image shown in Figure 5(b); and (c) for Re=0 at
t=20:5. At the later time t=24 shown in (b), all the �ngers oriented toward nearly the same tilting
angles. On the other hand, the �ngertips keep growing normally without the e�ects of Coriolis force,

cf. Re=0 in (c). The initial �at interfaces are also plotted by the dash-dot lines.

Figure 10. Re=1:5, a=0, and �= − 10−5; time evolution of mean tilting angles of �ngers for various
control parameters. The tilting angles show signi�cant growths, and reach their maximal when the

�ngers arrive shortly before to the computational boundaries.
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Figure 11. Plot of � as a function of Reynolds number Re for various parameters. The solid lines
are linear �t of the data. The values of � follow a nearly linear relationship with Re for arbitrary

combinations of all the control parameters Pe, R and a.

representative cases. Since the Coriolis forces induce e�ects by outward �ngering growths,
the e�ects of Coriolis force are less signi�cant in the early period, which corresponds the
latent period described earlier. Nearly no growths of tilting angles are observed. It should
be pointed out that the slightly negative values of tilting angles are mainly caused by the
irregular �ngering patterns. Due to the nature that the Coriolis force is proportional to radial
distance, these e�ects are further enhanced at the later stage. However, for a miscible �ow, the
Coriolis force also depends on the local density of �ngers as shown in Equation (2), which
continuously decreases due to the mixing e�ects by dispersion and di�usion. As a result, the
tilting angles show signi�cant growths until they reach their maxima before the occurrences
of strong mixing. Subsequently, since the concentration of the far outer �ngers disperses sig-
ni�cantly, these values decrease slightly when �ngers fully approach the computing boundary.
At the time, these �ngers have stretched outward and their length have reached nearly the
triple of the droplet radius. These tilting angles are then taken to represent the quantitative
in�uences of Coriolis forces. We delineate these values of tilting angles in Figure 11. It is
interesting to �nd out that the values of � follow a nearly linear relationship with Reynolds
numbers for arbitrary combinations of all the control parameters Pe, R and a. Furthermore,
these linear lines converge to the origin as Re approaches zero. The nice convergence to the
origin indicates the appropriateness of present quantitative evaluation. Finally, we evaluate
the slopes as a function of the relevant control parameters and plot them in Figure 12. We
estimate the correlation between the relevant control parameters and tilting angles of �ngers
that can be approximated as

�=(0:0047
√
Pe=R+ 18:2a)Re (19)
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Figure 12. Plot of the slopes as a function of Pe0:5=R for various a. The correlation between the relevant
control parameters and tilting angles of �ngers can be approximated as �=(0:0047

√
Pe=R+ 18:2a)Re.

4. CONCLUSION

We have presented highly accurate numerical simulations for miscible displacement in a
rotating Hele–Shaw cell. The interfacial instabilities have been analysed systematically. Our
analysis explicitly indicates how the relevant control parameters of the system, such as the
rotating speed in a dimensionless form of Peclet number Pe, the viscosity contrast parame-
ter R, the miscible interfacial Korteweg stresses constant � and the gap width parameter a,
in�uence the morphology of the interfacial patterns. We focused on the situations in which
Coriolis force, in terms of dimensionless parameter Reynolds number Re, are signi�cant.
In line with earlier studies that did not account for su�cient Coriolis forces, we �nd that
more vigorous �ngerings are observed at a larger Pe, a lower R, a weaker surface ten-
sion constant � and a faster lifting gap width parameter a. In these cases, more obvious
nonlinear behaviours develop, such as tip-splitting, �nger merging and multi-layer �nger-
ing. On the other hand, the higher pressing rate provides more stable e�ects by additional
outward �ows. Furthermore, we investigate the quantitative relationship between the mean
tilting angles � of �ngers and the Coriolis e�ects Re. A nearly linear relationship between
the mean tilting angles � of �ngers and the Coriolis e�ects Re is found for arbitrary com-
binations of all the relevant control parameters. These linear lines converge nicely to the
origin when Reynolds numbers vanish supports the appropriateness of such quantitative eval-
uations. We estimate the correlation between the control parameters and tilting angles of
�ngers that can be approximated as �=(0:0047

√
Pe=R + 18:2a)Re for signi�cant Korteweg

stresses.
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